3.240 \(\int \frac{(a+b \sinh ^{-1}(c x))^2}{x^2 (d+c^2 d x^2)^2} \, dx\)

Optimal. Leaf size=287 \[ \frac{3 i b c \text{PolyLog}\left (2,-i e^{\sinh ^{-1}(c x)}\right ) \left (a+b \sinh ^{-1}(c x)\right )}{d^2}-\frac{3 i b c \text{PolyLog}\left (2,i e^{\sinh ^{-1}(c x)}\right ) \left (a+b \sinh ^{-1}(c x)\right )}{d^2}-\frac{2 b^2 c \text{PolyLog}\left (2,-e^{\sinh ^{-1}(c x)}\right )}{d^2}+\frac{2 b^2 c \text{PolyLog}\left (2,e^{\sinh ^{-1}(c x)}\right )}{d^2}-\frac{3 i b^2 c \text{PolyLog}\left (3,-i e^{\sinh ^{-1}(c x)}\right )}{d^2}+\frac{3 i b^2 c \text{PolyLog}\left (3,i e^{\sinh ^{-1}(c x)}\right )}{d^2}-\frac{b c \left (a+b \sinh ^{-1}(c x)\right )}{d^2 \sqrt{c^2 x^2+1}}-\frac{3 c^2 x \left (a+b \sinh ^{-1}(c x)\right )^2}{2 d^2 \left (c^2 x^2+1\right )}-\frac{\left (a+b \sinh ^{-1}(c x)\right )^2}{d^2 x \left (c^2 x^2+1\right )}-\frac{3 c \tan ^{-1}\left (e^{\sinh ^{-1}(c x)}\right ) \left (a+b \sinh ^{-1}(c x)\right )^2}{d^2}-\frac{4 b c \tanh ^{-1}\left (e^{\sinh ^{-1}(c x)}\right ) \left (a+b \sinh ^{-1}(c x)\right )}{d^2}+\frac{b^2 c \tan ^{-1}(c x)}{d^2} \]

[Out]

-((b*c*(a + b*ArcSinh[c*x]))/(d^2*Sqrt[1 + c^2*x^2])) - (a + b*ArcSinh[c*x])^2/(d^2*x*(1 + c^2*x^2)) - (3*c^2*
x*(a + b*ArcSinh[c*x])^2)/(2*d^2*(1 + c^2*x^2)) - (3*c*(a + b*ArcSinh[c*x])^2*ArcTan[E^ArcSinh[c*x]])/d^2 + (b
^2*c*ArcTan[c*x])/d^2 - (4*b*c*(a + b*ArcSinh[c*x])*ArcTanh[E^ArcSinh[c*x]])/d^2 - (2*b^2*c*PolyLog[2, -E^ArcS
inh[c*x]])/d^2 + ((3*I)*b*c*(a + b*ArcSinh[c*x])*PolyLog[2, (-I)*E^ArcSinh[c*x]])/d^2 - ((3*I)*b*c*(a + b*ArcS
inh[c*x])*PolyLog[2, I*E^ArcSinh[c*x]])/d^2 + (2*b^2*c*PolyLog[2, E^ArcSinh[c*x]])/d^2 - ((3*I)*b^2*c*PolyLog[
3, (-I)*E^ArcSinh[c*x]])/d^2 + ((3*I)*b^2*c*PolyLog[3, I*E^ArcSinh[c*x]])/d^2

________________________________________________________________________________________

Rubi [A]  time = 0.543779, antiderivative size = 287, normalized size of antiderivative = 1., number of steps used = 20, number of rules used = 14, integrand size = 26, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.538, Rules used = {5747, 5690, 5693, 4180, 2531, 2282, 6589, 5717, 203, 5755, 5760, 4182, 2279, 2391} \[ \frac{3 i b c \text{PolyLog}\left (2,-i e^{\sinh ^{-1}(c x)}\right ) \left (a+b \sinh ^{-1}(c x)\right )}{d^2}-\frac{3 i b c \text{PolyLog}\left (2,i e^{\sinh ^{-1}(c x)}\right ) \left (a+b \sinh ^{-1}(c x)\right )}{d^2}-\frac{2 b^2 c \text{PolyLog}\left (2,-e^{\sinh ^{-1}(c x)}\right )}{d^2}+\frac{2 b^2 c \text{PolyLog}\left (2,e^{\sinh ^{-1}(c x)}\right )}{d^2}-\frac{3 i b^2 c \text{PolyLog}\left (3,-i e^{\sinh ^{-1}(c x)}\right )}{d^2}+\frac{3 i b^2 c \text{PolyLog}\left (3,i e^{\sinh ^{-1}(c x)}\right )}{d^2}-\frac{b c \left (a+b \sinh ^{-1}(c x)\right )}{d^2 \sqrt{c^2 x^2+1}}-\frac{3 c^2 x \left (a+b \sinh ^{-1}(c x)\right )^2}{2 d^2 \left (c^2 x^2+1\right )}-\frac{\left (a+b \sinh ^{-1}(c x)\right )^2}{d^2 x \left (c^2 x^2+1\right )}-\frac{3 c \tan ^{-1}\left (e^{\sinh ^{-1}(c x)}\right ) \left (a+b \sinh ^{-1}(c x)\right )^2}{d^2}-\frac{4 b c \tanh ^{-1}\left (e^{\sinh ^{-1}(c x)}\right ) \left (a+b \sinh ^{-1}(c x)\right )}{d^2}+\frac{b^2 c \tan ^{-1}(c x)}{d^2} \]

Antiderivative was successfully verified.

[In]

Int[(a + b*ArcSinh[c*x])^2/(x^2*(d + c^2*d*x^2)^2),x]

[Out]

-((b*c*(a + b*ArcSinh[c*x]))/(d^2*Sqrt[1 + c^2*x^2])) - (a + b*ArcSinh[c*x])^2/(d^2*x*(1 + c^2*x^2)) - (3*c^2*
x*(a + b*ArcSinh[c*x])^2)/(2*d^2*(1 + c^2*x^2)) - (3*c*(a + b*ArcSinh[c*x])^2*ArcTan[E^ArcSinh[c*x]])/d^2 + (b
^2*c*ArcTan[c*x])/d^2 - (4*b*c*(a + b*ArcSinh[c*x])*ArcTanh[E^ArcSinh[c*x]])/d^2 - (2*b^2*c*PolyLog[2, -E^ArcS
inh[c*x]])/d^2 + ((3*I)*b*c*(a + b*ArcSinh[c*x])*PolyLog[2, (-I)*E^ArcSinh[c*x]])/d^2 - ((3*I)*b*c*(a + b*ArcS
inh[c*x])*PolyLog[2, I*E^ArcSinh[c*x]])/d^2 + (2*b^2*c*PolyLog[2, E^ArcSinh[c*x]])/d^2 - ((3*I)*b^2*c*PolyLog[
3, (-I)*E^ArcSinh[c*x]])/d^2 + ((3*I)*b^2*c*PolyLog[3, I*E^ArcSinh[c*x]])/d^2

Rule 5747

Int[((a_.) + ArcSinh[(c_.)*(x_)]*(b_.))^(n_.)*((f_.)*(x_))^(m_)*((d_) + (e_.)*(x_)^2)^(p_), x_Symbol] :> Simp[
((f*x)^(m + 1)*(d + e*x^2)^(p + 1)*(a + b*ArcSinh[c*x])^n)/(d*f*(m + 1)), x] + (-Dist[(c^2*(m + 2*p + 3))/(f^2
*(m + 1)), Int[(f*x)^(m + 2)*(d + e*x^2)^p*(a + b*ArcSinh[c*x])^n, x], x] - Dist[(b*c*n*d^IntPart[p]*(d + e*x^
2)^FracPart[p])/(f*(m + 1)*(1 + c^2*x^2)^FracPart[p]), Int[(f*x)^(m + 1)*(1 + c^2*x^2)^(p + 1/2)*(a + b*ArcSin
h[c*x])^(n - 1), x], x]) /; FreeQ[{a, b, c, d, e, f, p}, x] && EqQ[e, c^2*d] && GtQ[n, 0] && LtQ[m, -1] && Int
egerQ[m]

Rule 5690

Int[((a_.) + ArcSinh[(c_.)*(x_)]*(b_.))^(n_.)*((d_) + (e_.)*(x_)^2)^(p_), x_Symbol] :> -Simp[(x*(d + e*x^2)^(p
 + 1)*(a + b*ArcSinh[c*x])^n)/(2*d*(p + 1)), x] + (Dist[(2*p + 3)/(2*d*(p + 1)), Int[(d + e*x^2)^(p + 1)*(a +
b*ArcSinh[c*x])^n, x], x] + Dist[(b*c*n*d^IntPart[p]*(d + e*x^2)^FracPart[p])/(2*(p + 1)*(1 + c^2*x^2)^FracPar
t[p]), Int[x*(1 + c^2*x^2)^(p + 1/2)*(a + b*ArcSinh[c*x])^(n - 1), x], x]) /; FreeQ[{a, b, c, d, e}, x] && EqQ
[e, c^2*d] && GtQ[n, 0] && LtQ[p, -1] && NeQ[p, -3/2]

Rule 5693

Int[((a_.) + ArcSinh[(c_.)*(x_)]*(b_.))^(n_.)/((d_) + (e_.)*(x_)^2), x_Symbol] :> Dist[1/(c*d), Subst[Int[(a +
 b*x)^n*Sech[x], x], x, ArcSinh[c*x]], x] /; FreeQ[{a, b, c, d, e}, x] && EqQ[e, c^2*d] && IGtQ[n, 0]

Rule 4180

Int[csc[(e_.) + Pi*(k_.) + (Complex[0, fz_])*(f_.)*(x_)]*((c_.) + (d_.)*(x_))^(m_.), x_Symbol] :> Simp[(-2*(c
+ d*x)^m*ArcTanh[E^(-(I*e) + f*fz*x)/E^(I*k*Pi)])/(f*fz*I), x] + (-Dist[(d*m)/(f*fz*I), Int[(c + d*x)^(m - 1)*
Log[1 - E^(-(I*e) + f*fz*x)/E^(I*k*Pi)], x], x] + Dist[(d*m)/(f*fz*I), Int[(c + d*x)^(m - 1)*Log[1 + E^(-(I*e)
 + f*fz*x)/E^(I*k*Pi)], x], x]) /; FreeQ[{c, d, e, f, fz}, x] && IntegerQ[2*k] && IGtQ[m, 0]

Rule 2531

Int[Log[1 + (e_.)*((F_)^((c_.)*((a_.) + (b_.)*(x_))))^(n_.)]*((f_.) + (g_.)*(x_))^(m_.), x_Symbol] :> -Simp[((
f + g*x)^m*PolyLog[2, -(e*(F^(c*(a + b*x)))^n)])/(b*c*n*Log[F]), x] + Dist[(g*m)/(b*c*n*Log[F]), Int[(f + g*x)
^(m - 1)*PolyLog[2, -(e*(F^(c*(a + b*x)))^n)], x], x] /; FreeQ[{F, a, b, c, e, f, g, n}, x] && GtQ[m, 0]

Rule 2282

Int[u_, x_Symbol] :> With[{v = FunctionOfExponential[u, x]}, Dist[v/D[v, x], Subst[Int[FunctionOfExponentialFu
nction[u, x]/x, x], x, v], x]] /; FunctionOfExponentialQ[u, x] &&  !MatchQ[u, (w_)*((a_.)*(v_)^(n_))^(m_) /; F
reeQ[{a, m, n}, x] && IntegerQ[m*n]] &&  !MatchQ[u, E^((c_.)*((a_.) + (b_.)*x))*(F_)[v_] /; FreeQ[{a, b, c}, x
] && InverseFunctionQ[F[x]]]

Rule 6589

Int[PolyLog[n_, (c_.)*((a_.) + (b_.)*(x_))^(p_.)]/((d_.) + (e_.)*(x_)), x_Symbol] :> Simp[PolyLog[n + 1, c*(a
+ b*x)^p]/(e*p), x] /; FreeQ[{a, b, c, d, e, n, p}, x] && EqQ[b*d, a*e]

Rule 5717

Int[((a_.) + ArcSinh[(c_.)*(x_)]*(b_.))^(n_.)*(x_)*((d_) + (e_.)*(x_)^2)^(p_.), x_Symbol] :> Simp[((d + e*x^2)
^(p + 1)*(a + b*ArcSinh[c*x])^n)/(2*e*(p + 1)), x] - Dist[(b*n*d^IntPart[p]*(d + e*x^2)^FracPart[p])/(2*c*(p +
 1)*(1 + c^2*x^2)^FracPart[p]), Int[(1 + c^2*x^2)^(p + 1/2)*(a + b*ArcSinh[c*x])^(n - 1), x], x] /; FreeQ[{a,
b, c, d, e, p}, x] && EqQ[e, c^2*d] && GtQ[n, 0] && NeQ[p, -1]

Rule 203

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1*ArcTan[(Rt[b, 2]*x)/Rt[a, 2]])/(Rt[a, 2]*Rt[b, 2]), x] /;
 FreeQ[{a, b}, x] && PosQ[a/b] && (GtQ[a, 0] || GtQ[b, 0])

Rule 5755

Int[((a_.) + ArcSinh[(c_.)*(x_)]*(b_.))^(n_.)*((f_.)*(x_))^(m_)*((d_) + (e_.)*(x_)^2)^(p_), x_Symbol] :> -Simp
[((f*x)^(m + 1)*(d + e*x^2)^(p + 1)*(a + b*ArcSinh[c*x])^n)/(2*d*f*(p + 1)), x] + (Dist[(m + 2*p + 3)/(2*d*(p
+ 1)), Int[(f*x)^m*(d + e*x^2)^(p + 1)*(a + b*ArcSinh[c*x])^n, x], x] + Dist[(b*c*n*d^IntPart[p]*(d + e*x^2)^F
racPart[p])/(2*f*(p + 1)*(1 + c^2*x^2)^FracPart[p]), Int[(f*x)^(m + 1)*(1 + c^2*x^2)^(p + 1/2)*(a + b*ArcSinh[
c*x])^(n - 1), x], x]) /; FreeQ[{a, b, c, d, e, f, m}, x] && EqQ[e, c^2*d] && GtQ[n, 0] && LtQ[p, -1] &&  !GtQ
[m, 1] && (IntegerQ[m] || IntegerQ[p] || EqQ[n, 1])

Rule 5760

Int[(((a_.) + ArcSinh[(c_.)*(x_)]*(b_.))^(n_.)*(x_)^(m_))/Sqrt[(d_) + (e_.)*(x_)^2], x_Symbol] :> Dist[1/(c^(m
 + 1)*Sqrt[d]), Subst[Int[(a + b*x)^n*Sinh[x]^m, x], x, ArcSinh[c*x]], x] /; FreeQ[{a, b, c, d, e}, x] && EqQ[
e, c^2*d] && GtQ[d, 0] && IGtQ[n, 0] && IntegerQ[m]

Rule 4182

Int[csc[(e_.) + (Complex[0, fz_])*(f_.)*(x_)]*((c_.) + (d_.)*(x_))^(m_.), x_Symbol] :> Simp[(-2*(c + d*x)^m*Ar
cTanh[E^(-(I*e) + f*fz*x)])/(f*fz*I), x] + (-Dist[(d*m)/(f*fz*I), Int[(c + d*x)^(m - 1)*Log[1 - E^(-(I*e) + f*
fz*x)], x], x] + Dist[(d*m)/(f*fz*I), Int[(c + d*x)^(m - 1)*Log[1 + E^(-(I*e) + f*fz*x)], x], x]) /; FreeQ[{c,
 d, e, f, fz}, x] && IGtQ[m, 0]

Rule 2279

Int[Log[(a_) + (b_.)*((F_)^((e_.)*((c_.) + (d_.)*(x_))))^(n_.)], x_Symbol] :> Dist[1/(d*e*n*Log[F]), Subst[Int
[Log[a + b*x]/x, x], x, (F^(e*(c + d*x)))^n], x] /; FreeQ[{F, a, b, c, d, e, n}, x] && GtQ[a, 0]

Rule 2391

Int[Log[(c_.)*((d_) + (e_.)*(x_)^(n_.))]/(x_), x_Symbol] :> -Simp[PolyLog[2, -(c*e*x^n)]/n, x] /; FreeQ[{c, d,
 e, n}, x] && EqQ[c*d, 1]

Rubi steps

\begin{align*} \int \frac{\left (a+b \sinh ^{-1}(c x)\right )^2}{x^2 \left (d+c^2 d x^2\right )^2} \, dx &=-\frac{\left (a+b \sinh ^{-1}(c x)\right )^2}{d^2 x \left (1+c^2 x^2\right )}-\left (3 c^2\right ) \int \frac{\left (a+b \sinh ^{-1}(c x)\right )^2}{\left (d+c^2 d x^2\right )^2} \, dx+\frac{(2 b c) \int \frac{a+b \sinh ^{-1}(c x)}{x \left (1+c^2 x^2\right )^{3/2}} \, dx}{d^2}\\ &=\frac{2 b c \left (a+b \sinh ^{-1}(c x)\right )}{d^2 \sqrt{1+c^2 x^2}}-\frac{\left (a+b \sinh ^{-1}(c x)\right )^2}{d^2 x \left (1+c^2 x^2\right )}-\frac{3 c^2 x \left (a+b \sinh ^{-1}(c x)\right )^2}{2 d^2 \left (1+c^2 x^2\right )}+\frac{(2 b c) \int \frac{a+b \sinh ^{-1}(c x)}{x \sqrt{1+c^2 x^2}} \, dx}{d^2}-\frac{\left (2 b^2 c^2\right ) \int \frac{1}{1+c^2 x^2} \, dx}{d^2}+\frac{\left (3 b c^3\right ) \int \frac{x \left (a+b \sinh ^{-1}(c x)\right )}{\left (1+c^2 x^2\right )^{3/2}} \, dx}{d^2}-\frac{\left (3 c^2\right ) \int \frac{\left (a+b \sinh ^{-1}(c x)\right )^2}{d+c^2 d x^2} \, dx}{2 d}\\ &=-\frac{b c \left (a+b \sinh ^{-1}(c x)\right )}{d^2 \sqrt{1+c^2 x^2}}-\frac{\left (a+b \sinh ^{-1}(c x)\right )^2}{d^2 x \left (1+c^2 x^2\right )}-\frac{3 c^2 x \left (a+b \sinh ^{-1}(c x)\right )^2}{2 d^2 \left (1+c^2 x^2\right )}-\frac{2 b^2 c \tan ^{-1}(c x)}{d^2}-\frac{(3 c) \operatorname{Subst}\left (\int (a+b x)^2 \text{sech}(x) \, dx,x,\sinh ^{-1}(c x)\right )}{2 d^2}+\frac{(2 b c) \operatorname{Subst}\left (\int (a+b x) \text{csch}(x) \, dx,x,\sinh ^{-1}(c x)\right )}{d^2}+\frac{\left (3 b^2 c^2\right ) \int \frac{1}{1+c^2 x^2} \, dx}{d^2}\\ &=-\frac{b c \left (a+b \sinh ^{-1}(c x)\right )}{d^2 \sqrt{1+c^2 x^2}}-\frac{\left (a+b \sinh ^{-1}(c x)\right )^2}{d^2 x \left (1+c^2 x^2\right )}-\frac{3 c^2 x \left (a+b \sinh ^{-1}(c x)\right )^2}{2 d^2 \left (1+c^2 x^2\right )}-\frac{3 c \left (a+b \sinh ^{-1}(c x)\right )^2 \tan ^{-1}\left (e^{\sinh ^{-1}(c x)}\right )}{d^2}+\frac{b^2 c \tan ^{-1}(c x)}{d^2}-\frac{4 b c \left (a+b \sinh ^{-1}(c x)\right ) \tanh ^{-1}\left (e^{\sinh ^{-1}(c x)}\right )}{d^2}+\frac{(3 i b c) \operatorname{Subst}\left (\int (a+b x) \log \left (1-i e^x\right ) \, dx,x,\sinh ^{-1}(c x)\right )}{d^2}-\frac{(3 i b c) \operatorname{Subst}\left (\int (a+b x) \log \left (1+i e^x\right ) \, dx,x,\sinh ^{-1}(c x)\right )}{d^2}-\frac{\left (2 b^2 c\right ) \operatorname{Subst}\left (\int \log \left (1-e^x\right ) \, dx,x,\sinh ^{-1}(c x)\right )}{d^2}+\frac{\left (2 b^2 c\right ) \operatorname{Subst}\left (\int \log \left (1+e^x\right ) \, dx,x,\sinh ^{-1}(c x)\right )}{d^2}\\ &=-\frac{b c \left (a+b \sinh ^{-1}(c x)\right )}{d^2 \sqrt{1+c^2 x^2}}-\frac{\left (a+b \sinh ^{-1}(c x)\right )^2}{d^2 x \left (1+c^2 x^2\right )}-\frac{3 c^2 x \left (a+b \sinh ^{-1}(c x)\right )^2}{2 d^2 \left (1+c^2 x^2\right )}-\frac{3 c \left (a+b \sinh ^{-1}(c x)\right )^2 \tan ^{-1}\left (e^{\sinh ^{-1}(c x)}\right )}{d^2}+\frac{b^2 c \tan ^{-1}(c x)}{d^2}-\frac{4 b c \left (a+b \sinh ^{-1}(c x)\right ) \tanh ^{-1}\left (e^{\sinh ^{-1}(c x)}\right )}{d^2}+\frac{3 i b c \left (a+b \sinh ^{-1}(c x)\right ) \text{Li}_2\left (-i e^{\sinh ^{-1}(c x)}\right )}{d^2}-\frac{3 i b c \left (a+b \sinh ^{-1}(c x)\right ) \text{Li}_2\left (i e^{\sinh ^{-1}(c x)}\right )}{d^2}-\frac{\left (3 i b^2 c\right ) \operatorname{Subst}\left (\int \text{Li}_2\left (-i e^x\right ) \, dx,x,\sinh ^{-1}(c x)\right )}{d^2}+\frac{\left (3 i b^2 c\right ) \operatorname{Subst}\left (\int \text{Li}_2\left (i e^x\right ) \, dx,x,\sinh ^{-1}(c x)\right )}{d^2}-\frac{\left (2 b^2 c\right ) \operatorname{Subst}\left (\int \frac{\log (1-x)}{x} \, dx,x,e^{\sinh ^{-1}(c x)}\right )}{d^2}+\frac{\left (2 b^2 c\right ) \operatorname{Subst}\left (\int \frac{\log (1+x)}{x} \, dx,x,e^{\sinh ^{-1}(c x)}\right )}{d^2}\\ &=-\frac{b c \left (a+b \sinh ^{-1}(c x)\right )}{d^2 \sqrt{1+c^2 x^2}}-\frac{\left (a+b \sinh ^{-1}(c x)\right )^2}{d^2 x \left (1+c^2 x^2\right )}-\frac{3 c^2 x \left (a+b \sinh ^{-1}(c x)\right )^2}{2 d^2 \left (1+c^2 x^2\right )}-\frac{3 c \left (a+b \sinh ^{-1}(c x)\right )^2 \tan ^{-1}\left (e^{\sinh ^{-1}(c x)}\right )}{d^2}+\frac{b^2 c \tan ^{-1}(c x)}{d^2}-\frac{4 b c \left (a+b \sinh ^{-1}(c x)\right ) \tanh ^{-1}\left (e^{\sinh ^{-1}(c x)}\right )}{d^2}-\frac{2 b^2 c \text{Li}_2\left (-e^{\sinh ^{-1}(c x)}\right )}{d^2}+\frac{3 i b c \left (a+b \sinh ^{-1}(c x)\right ) \text{Li}_2\left (-i e^{\sinh ^{-1}(c x)}\right )}{d^2}-\frac{3 i b c \left (a+b \sinh ^{-1}(c x)\right ) \text{Li}_2\left (i e^{\sinh ^{-1}(c x)}\right )}{d^2}+\frac{2 b^2 c \text{Li}_2\left (e^{\sinh ^{-1}(c x)}\right )}{d^2}-\frac{\left (3 i b^2 c\right ) \operatorname{Subst}\left (\int \frac{\text{Li}_2(-i x)}{x} \, dx,x,e^{\sinh ^{-1}(c x)}\right )}{d^2}+\frac{\left (3 i b^2 c\right ) \operatorname{Subst}\left (\int \frac{\text{Li}_2(i x)}{x} \, dx,x,e^{\sinh ^{-1}(c x)}\right )}{d^2}\\ &=-\frac{b c \left (a+b \sinh ^{-1}(c x)\right )}{d^2 \sqrt{1+c^2 x^2}}-\frac{\left (a+b \sinh ^{-1}(c x)\right )^2}{d^2 x \left (1+c^2 x^2\right )}-\frac{3 c^2 x \left (a+b \sinh ^{-1}(c x)\right )^2}{2 d^2 \left (1+c^2 x^2\right )}-\frac{3 c \left (a+b \sinh ^{-1}(c x)\right )^2 \tan ^{-1}\left (e^{\sinh ^{-1}(c x)}\right )}{d^2}+\frac{b^2 c \tan ^{-1}(c x)}{d^2}-\frac{4 b c \left (a+b \sinh ^{-1}(c x)\right ) \tanh ^{-1}\left (e^{\sinh ^{-1}(c x)}\right )}{d^2}-\frac{2 b^2 c \text{Li}_2\left (-e^{\sinh ^{-1}(c x)}\right )}{d^2}+\frac{3 i b c \left (a+b \sinh ^{-1}(c x)\right ) \text{Li}_2\left (-i e^{\sinh ^{-1}(c x)}\right )}{d^2}-\frac{3 i b c \left (a+b \sinh ^{-1}(c x)\right ) \text{Li}_2\left (i e^{\sinh ^{-1}(c x)}\right )}{d^2}+\frac{2 b^2 c \text{Li}_2\left (e^{\sinh ^{-1}(c x)}\right )}{d^2}-\frac{3 i b^2 c \text{Li}_3\left (-i e^{\sinh ^{-1}(c x)}\right )}{d^2}+\frac{3 i b^2 c \text{Li}_3\left (i e^{\sinh ^{-1}(c x)}\right )}{d^2}\\ \end{align*}

Mathematica [A]  time = 7.19479, size = 549, normalized size = 1.91 \[ \frac{2 a b c \left (\frac{3}{4} i \left (2 \text{PolyLog}\left (2,-i e^{\sinh ^{-1}(c x)}\right )-\frac{1}{2} \sinh ^{-1}(c x)^2+2 \sinh ^{-1}(c x) \log \left (1+i e^{\sinh ^{-1}(c x)}\right )\right )-\frac{3}{4} i \left (2 \text{PolyLog}\left (2,i e^{\sinh ^{-1}(c x)}\right )-\frac{1}{2} \sinh ^{-1}(c x)^2+2 \sinh ^{-1}(c x) \log \left (1-i e^{\sinh ^{-1}(c x)}\right )\right )+\frac{\sqrt{c^2 x^2+1}+i \sinh ^{-1}(c x)}{4 (-1-i c x)}-\frac{\sinh ^{-1}(c x)+i \sqrt{c^2 x^2+1}}{4 (c x+i)}-\tanh ^{-1}\left (\sqrt{c^2 x^2+1}\right )-\frac{\sinh ^{-1}(c x)}{c x}\right )}{d^2}+\frac{b^2 c \left (6 i \sinh ^{-1}(c x) \text{PolyLog}\left (2,-i e^{-\sinh ^{-1}(c x)}\right )-6 i \sinh ^{-1}(c x) \text{PolyLog}\left (2,i e^{-\sinh ^{-1}(c x)}\right )+4 \text{PolyLog}\left (2,-e^{-\sinh ^{-1}(c x)}\right )-4 \text{PolyLog}\left (2,e^{-\sinh ^{-1}(c x)}\right )+6 i \text{PolyLog}\left (3,-i e^{-\sinh ^{-1}(c x)}\right )-6 i \text{PolyLog}\left (3,i e^{-\sinh ^{-1}(c x)}\right )-\frac{c x \sinh ^{-1}(c x)^2}{c^2 x^2+1}-\frac{2 \sinh ^{-1}(c x)}{\sqrt{c^2 x^2+1}}+3 i \sinh ^{-1}(c x)^2 \log \left (1-i e^{-\sinh ^{-1}(c x)}\right )-3 i \sinh ^{-1}(c x)^2 \log \left (1+i e^{-\sinh ^{-1}(c x)}\right )+4 \sinh ^{-1}(c x) \log \left (1-e^{-\sinh ^{-1}(c x)}\right )-4 \sinh ^{-1}(c x) \log \left (e^{-\sinh ^{-1}(c x)}+1\right )+\sinh ^{-1}(c x)^2 \tanh \left (\frac{1}{2} \sinh ^{-1}(c x)\right )+\sinh ^{-1}(c x)^2 \left (-\coth \left (\frac{1}{2} \sinh ^{-1}(c x)\right )\right )+4 \tan ^{-1}\left (\tanh \left (\frac{1}{2} \sinh ^{-1}(c x)\right )\right )\right )}{2 d^2}-\frac{a^2 c^2 x}{2 d^2 \left (c^2 x^2+1\right )}-\frac{3 a^2 c \tan ^{-1}(c x)}{2 d^2}-\frac{a^2}{d^2 x} \]

Warning: Unable to verify antiderivative.

[In]

Integrate[(a + b*ArcSinh[c*x])^2/(x^2*(d + c^2*d*x^2)^2),x]

[Out]

-(a^2/(d^2*x)) - (a^2*c^2*x)/(2*d^2*(1 + c^2*x^2)) - (3*a^2*c*ArcTan[c*x])/(2*d^2) + (2*a*b*c*((Sqrt[1 + c^2*x
^2] + I*ArcSinh[c*x])/(4*(-1 - I*c*x)) - ArcSinh[c*x]/(c*x) - (I*Sqrt[1 + c^2*x^2] + ArcSinh[c*x])/(4*(I + c*x
)) - ArcTanh[Sqrt[1 + c^2*x^2]] + ((3*I)/4)*(-ArcSinh[c*x]^2/2 + 2*ArcSinh[c*x]*Log[1 + I*E^ArcSinh[c*x]] + 2*
PolyLog[2, (-I)*E^ArcSinh[c*x]]) - ((3*I)/4)*(-ArcSinh[c*x]^2/2 + 2*ArcSinh[c*x]*Log[1 - I*E^ArcSinh[c*x]] + 2
*PolyLog[2, I*E^ArcSinh[c*x]])))/d^2 + (b^2*c*((-2*ArcSinh[c*x])/Sqrt[1 + c^2*x^2] - (c*x*ArcSinh[c*x]^2)/(1 +
 c^2*x^2) + 4*ArcTan[Tanh[ArcSinh[c*x]/2]] - ArcSinh[c*x]^2*Coth[ArcSinh[c*x]/2] + 4*ArcSinh[c*x]*Log[1 - E^(-
ArcSinh[c*x])] + (3*I)*ArcSinh[c*x]^2*Log[1 - I/E^ArcSinh[c*x]] - (3*I)*ArcSinh[c*x]^2*Log[1 + I/E^ArcSinh[c*x
]] - 4*ArcSinh[c*x]*Log[1 + E^(-ArcSinh[c*x])] + 4*PolyLog[2, -E^(-ArcSinh[c*x])] + (6*I)*ArcSinh[c*x]*PolyLog
[2, (-I)/E^ArcSinh[c*x]] - (6*I)*ArcSinh[c*x]*PolyLog[2, I/E^ArcSinh[c*x]] - 4*PolyLog[2, E^(-ArcSinh[c*x])] +
 (6*I)*PolyLog[3, (-I)/E^ArcSinh[c*x]] - (6*I)*PolyLog[3, I/E^ArcSinh[c*x]] + ArcSinh[c*x]^2*Tanh[ArcSinh[c*x]
/2]))/(2*d^2)

________________________________________________________________________________________

Maple [F]  time = 0.255, size = 0, normalized size = 0. \begin{align*} \int{\frac{ \left ( a+b{\it Arcsinh} \left ( cx \right ) \right ) ^{2}}{{x}^{2} \left ({c}^{2}d{x}^{2}+d \right ) ^{2}}}\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((a+b*arcsinh(c*x))^2/x^2/(c^2*d*x^2+d)^2,x)

[Out]

int((a+b*arcsinh(c*x))^2/x^2/(c^2*d*x^2+d)^2,x)

________________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \begin{align*} -\frac{1}{2} \, a^{2}{\left (\frac{3 \, c^{2} x^{2} + 2}{c^{2} d^{2} x^{3} + d^{2} x} + \frac{3 \, c \arctan \left (c x\right )}{d^{2}}\right )} + \int \frac{b^{2} \log \left (c x + \sqrt{c^{2} x^{2} + 1}\right )^{2}}{c^{4} d^{2} x^{6} + 2 \, c^{2} d^{2} x^{4} + d^{2} x^{2}} + \frac{2 \, a b \log \left (c x + \sqrt{c^{2} x^{2} + 1}\right )}{c^{4} d^{2} x^{6} + 2 \, c^{2} d^{2} x^{4} + d^{2} x^{2}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+b*arcsinh(c*x))^2/x^2/(c^2*d*x^2+d)^2,x, algorithm="maxima")

[Out]

-1/2*a^2*((3*c^2*x^2 + 2)/(c^2*d^2*x^3 + d^2*x) + 3*c*arctan(c*x)/d^2) + integrate(b^2*log(c*x + sqrt(c^2*x^2
+ 1))^2/(c^4*d^2*x^6 + 2*c^2*d^2*x^4 + d^2*x^2) + 2*a*b*log(c*x + sqrt(c^2*x^2 + 1))/(c^4*d^2*x^6 + 2*c^2*d^2*
x^4 + d^2*x^2), x)

________________________________________________________________________________________

Fricas [F]  time = 0., size = 0, normalized size = 0. \begin{align*}{\rm integral}\left (\frac{b^{2} \operatorname{arsinh}\left (c x\right )^{2} + 2 \, a b \operatorname{arsinh}\left (c x\right ) + a^{2}}{c^{4} d^{2} x^{6} + 2 \, c^{2} d^{2} x^{4} + d^{2} x^{2}}, x\right ) \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+b*arcsinh(c*x))^2/x^2/(c^2*d*x^2+d)^2,x, algorithm="fricas")

[Out]

integral((b^2*arcsinh(c*x)^2 + 2*a*b*arcsinh(c*x) + a^2)/(c^4*d^2*x^6 + 2*c^2*d^2*x^4 + d^2*x^2), x)

________________________________________________________________________________________

Sympy [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \frac{\int \frac{a^{2}}{c^{4} x^{6} + 2 c^{2} x^{4} + x^{2}}\, dx + \int \frac{b^{2} \operatorname{asinh}^{2}{\left (c x \right )}}{c^{4} x^{6} + 2 c^{2} x^{4} + x^{2}}\, dx + \int \frac{2 a b \operatorname{asinh}{\left (c x \right )}}{c^{4} x^{6} + 2 c^{2} x^{4} + x^{2}}\, dx}{d^{2}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+b*asinh(c*x))**2/x**2/(c**2*d*x**2+d)**2,x)

[Out]

(Integral(a**2/(c**4*x**6 + 2*c**2*x**4 + x**2), x) + Integral(b**2*asinh(c*x)**2/(c**4*x**6 + 2*c**2*x**4 + x
**2), x) + Integral(2*a*b*asinh(c*x)/(c**4*x**6 + 2*c**2*x**4 + x**2), x))/d**2

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{{\left (b \operatorname{arsinh}\left (c x\right ) + a\right )}^{2}}{{\left (c^{2} d x^{2} + d\right )}^{2} x^{2}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+b*arcsinh(c*x))^2/x^2/(c^2*d*x^2+d)^2,x, algorithm="giac")

[Out]

integrate((b*arcsinh(c*x) + a)^2/((c^2*d*x^2 + d)^2*x^2), x)